
A Declarative Framework for
Modeling Pronunciation and

Rhyme

David Dubin (ddubin@uiuc.edu)

University of Illinois

David J. Birnbaum (djbpitt+@pitt.edu)

University of Pittsburgh

E ncoding standards such as TEI give scholars a great deal
of flexibility in annotating texts to meet the particular

needs of a study or project. Researchers necessarily make
choices about which features of a text to highlight, what kinds
of additional information to add, and what facts are left to be
inferred from other sources of evidence apart from markup.

Among the factors to be considered in designing or adopting
text encoding procedures are the prospects for:

• data reuse and generalization beyond the scope of the one's
current project,

• investigating new questions about the texts that hadn't been
anticipated, and

• planning for the integration of texts using other markup
schemes.

This paper discusses considerations motivating the ongoing
design of a software framework for analysis of rhyming schemes
in 19th century Russian poetry. At its simplest, the application
receives as input poems marked up like the example in Figure
1 and produces output like the following:

?- run('poem.xml').
Line 001 rhymes with Line 003
Line 002 rhymes with Line 004
Line 003 rhymes with Line 001
Line 004 rhymes with Line 002

<POEM OPID="S1.100" LINESPAN="1-4"
COLPAGE="1.261" YEAR="1817"
MASCRHYME="2" FEMRHYME="2"
OTHERRHYME="0" MASCUNRHYME="0"
FEMUNRHYME="0" OTHERUNRHYME="0"
NOENDWORD="0" COL13="2.75">
<TITLE>Надпись на стене больницы</TITLE>
<LINE LINENO="001">Вот здесь лежит
больной студ<STRESS>е</STRESS>нт;</LINE>

<LINE LINENO="002">Его судьба
неумол<STRESS>и</STRESS>ма.</LINE>
<LINE LINENO="003">Несите прочь
медикам<STRESS>е</STRESS>нт:</LINE>
<LINE LINENO="004">Болезнь любви
неизлеч<STRESS>и</STRESS>ма!</LINE>
</POEM>

Figure 1

Programs producing output such as the example above could
be written in any of a variety of different programming
languages. They might employ different strategies for integrating
linguistic and orthographic processing rules with evidence
encoded more directly using markup. For example, we discuss
an earlier approach to the current project in Adams & Birnbaum.
Our current implementation, however, is written in Prolog as
an application of the BECHAMEL system for markup semantics
analysis (Dubin et al.). The motivation for this choice was our
wish to plan from the beginning for extensions to other encoding
schemes and generalization to other kinds of analysis.

Prolog is a declarative language of rules and assertions, and
BECHAMEL is a collection of predicates supporting the
declaration of object classes, properties, relations among objects,
and the execution of inference rules based on information
extracted from XML documents. An example of a Prolog clause
is shown below: it is part of our application's logic for
determining that two sequences of phonemes at the ends of a
pair of orthographic lines all agree with each other (i.e., that the
sounds at the end of the lines rhyme with each other).

all_agree(P1,P2) :- agree(P1,P2),
/* P1 is written using C1 */
relation_applies(written,[P1,C1]),
relation_applies(written,[P2,C2]),
/* C3 follows C1 */
relation_applies(follows,[C1,C3]),
relation_applies(follows,[C2,C4]),
relation_applies(written,[P3,C3]),
relation_applies(written,[P4,C4]),
all_agree(P3,P4).

In the clause, P1, P2, P3, and P4 are variables representing
phoneme objects, and C1, C2,C3, and C4 are variables
representing character objects. The predicate all_agree(P1,P2)
will be satisfied if each of the predicates following the
implication sign can be satisfied. The logic of the clause can be
read as follows:

Phonemes P1 and P2 'all agree' if phonemes P1-P4 are written
using characters C1-C4, respectively, if C3 follows C1 in the
orthographic line, if C4 follows C2 in the line, if P1 and P2 'agree'
and if P3 and P4 'all agree.'

Page 1

ACH/ALLC 2005



This clause is one of several in a recursive rule that attempts to
match up corresponding phonemes in rhyming lines, starting
from the line's stressed vowel.

A major advantage of Prolog's declarative approach is the
flexibility to define logic for separate cases in separate clauses
for the same rule. For example, in the clause shown above, it is
presupposed that in both lines there will be a simple one-to-one
mapping from characters in sequence to phonemes. But
accommodating more complex cases need not complicate the
expression of the simple case: if the simpler clause cannot be
satisfied then Prolog's inference engine will search for a different
clause of the same rule that can be satisfied.

Reasoning about poems like the one in the example above
requires that we model their contents at both a phonemic and
orthographic level. The rules for Russian pronunciation include
not only the way that particular vowels and consonants sound,
but also how those phonemes are cued by the way the text is
written (as with, for example, the palatalizing effect of the soft
sign and the soft vowel letters). The BECHAMEL system's
definition predicates for object classes, properties, and relations
gives us the ability to model each of these levels with
declarations such as the following:

/* There are things called phonemes */
declare_class(phoneme).
/* There are things called vowels */
declare_class(vowel).
declare_class(consonant).
/* vowels are a kind of phoneme */
declare_subclass(vowel,phoneme).
declare_subclass(consonant,phoneme).
/* vowels may be stressed or not */
declare_property(vowel,stress,atom).
declare_property(consonant,palatalized,atom),
declare_relation(written, [phoneme,
letter]),
declare_class(character),
declare_property(character,id,atom),
declare_property(character,palatalizing,atom),

In our approach, the phonemic properties of vowels and
consonants are distinct from the orthographic properties of
characters, written words, and lines. But it can occasionally be
convenient for users to ignore these distinctions, particularly in
comparing different proposed models for the same data. We
therefore aim to let the models govern as much processing of
our raw data as possible. For example, both phonemic and
orthographic properties of letters are recorded in a data file using
the same predicate as shown below:

alph_table(1083,id,u043B).
alph_table(1083,name,el).
alph_table(1083,charclass,consonant).

alph_table(1083,case,lower).
alph_table(1083,voicing,voiced).
alph_table(1083,place,alveolar).
alph_table(1083,manner,liquid).

In this example, id, name, case, and charclass are all
properties of characters, while voicing, place, and manner
are phonemic properties. As individual characters and phonemes
are instantiated, they acquire only those properties that are
appropriate for their class. This is accomplished through
general-purpose rules that match on the basis of our property
declarations. So if we were to decide (for example) that name
should be a property of the phoneme rather than the character,
we need only change the declaration, and the property value
recorded in the data file would be assigned to phoneme objects
rather than character objects.

BECHAMEL supports superclass and subclass relations,
which allows us to declare that vowels and consonants are
subclasses of phoneme, and that letters, marks, and spaces are
subclasses of character. Since the conventional
superclass/subclass relation can prove awkward in some
situations, BECHAMEL includes class declaration expressions
similar to those found in ontology languages such as OWL
(W3C).

For example, place and manner of articulation in consonants
may be used to describe classes of phonemes, not merely
features of them (the class of stops, the class of velar consonants,
etc.). It would be awkward to declare each consonant as a
subclass of both its place and manner of articulation. Instead
we use a BECHAMEL predicate that permits us to declare
membership in a class based on the value assigned to a particular
property:

declare_propclass(alveolar,place,alveolar).
declare_propclass(velar,place,velar).
declare_propclass(glottal,place,glottal).
declare_propclass(glide,manner,glide).
declare_propclass(liquid,manner,liquid).
declare_propclass(nasal,manner,nasal).

An alveolar, therefore, is anything that takes the value
alveolar on its place property, a nasal anything that takes
nasal for its manner property, and so on. These class
identities are in addition to the one that instantiated the object.
A related feature of BECHAMEL is the ability to define class
membership based on a Boolean expression. The following
example declares that an obstruent is either a stop, a fricative,
or an affricate:

declare_boolean(obstruent,or(stop,
or(fricative,affricate))).

All of these features are employed with the aim of making our
understandings, models, and simplifications regarding the rules

Page 2

ACH/ALLC 2005



of Russian pronunciation as clear and as explicit as possible.
We express them in the form of declarative rules so as not to
entangle implementation details of our code with aspects of our
model that should be open to criticism, revision, and extension.
For example, our rule governing the devoicing of word-final
obstruents states that if an obstruent O is written with word-final
letter L, then O should take a value of voiceless on its
voicing property (unless it already has that property value):

mrule2 :- isa(O, obstruent),
relation_applies(written,[O,L]),
property_applies(L,wordfinal,true),
not(property_applies(O,voicing,voiceless)),
apply_property(O,voicing,voiceless),!.

Taking this approach, even a limited application, such as
determining which lines of a poem rhyme, requires a large
number of these declarations and rules; there is a very real sense
in which we are doing it 'the hard way'. But as a result our
application-specific code is only about seven percent of the size
of the supporting declarations and rules. In addition to
strengthening our confidence in our framework's potential for
generalization, the demands of our approach have been a helpful
modeling exercise in their own right.

Bibliography

Adams, L.D., and D. Birnbaum. "Perspectives on computer
programming for the humanities." Text Technology 7.1 (1997):
1-17.

Dubin, D., C.M. Sperberg-McQueen, A. Renear, and C.
Huitfeldt. "A logic programming environment for document
semantics and inference." Literary and Linguistic Computing
18.2 (2003): 225-233.

W3C. OWL Web Ontology Language Overview (W3C
Recommendation). 10 February 2004. Accessed 2005-04-04.
<http://www.w3.org/TR/2004/REC-owl-feature
s-20040210/>

Page 3

ACH/ALLC 2005

http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.w3.org/TR/2004/REC-owl-features-20040210/

